Hytran v 3.5.5 to v3.6.2 New Features

- 1.0 DRES, URES, VALD, VALI : % opening vs Coefficient added to Input
- 2.0 VALI: New algorithm and Optional inclusion of the additional headloss
- 3.0 SURG: Option to allow the tank to empty

Hytran v3.5.6

- 4.0 Pump/RUNS allows the user to input pump curve
- 5.0 Pump/STAR/CHEK and PUMP/SHUT/CHEK allow users to input pump curve
- 6.0 PUMP/STAR/VALI and PUMP/SHUT/VALI allow users to input pump curve
- 7.0 Text Boxes to label the drawing
- 8.0 Additional Dialog box for convenient editing of node and pipe data Hytran v3.5.7
- 9.0 AIRV: Back Siphon Break Option
- 10.0 Help for VISTA

Hytranv 3.5.9

- 11.0 Drawing Parallell Curved Pipes
- 12.0 PUMP/VALI Input. Valve coefficients vs % Stem Movement as input
- 13.0 Composite Pipes added to the Pipe Input Dialog
- 14.0 Pipe Constraints added to Pipe Dialog box

Hytran 3.6.0

- 15 EPANET import now reads alpha names in the *.inp file
- 16 Place EPANET Flow BC's on upstream node of the EPANET definition
- 17 Where there is BC already on the Uspstream node or it is an Branch node, the pipe is split and the BC is located at split location
- 18 Curved pipes available for parallel pipes in EPANET
- **19** Pipes ++ can have the same features as EPANET

Hytran3.6.1

20 AIRC: MASSAL Air Chamber New algorithm to include air valve specification

Improvements

Hytran v3.5.6

1 Vali: The headloss through the in-line control valve have been recoded to provide more stability when the flow is reversing through the valve while it is closing

Hytran v3.5.7

- 2 **Pipe Selection indicator:**When selecting a pipe, a rectangular box appears enclosing the selected pipe
- 3 DRES/VALVE Bug removed for reverse flowout of Reservoir

Hytran v3.5.8

4 Fluid properties Hytran now requires the atmospheric pressure to be enters in bar or psi

Hytran v3.6.0

1 EPANET conversion of MLD to m³/s corrected

Hytran v3.6.1-2

- 1 **Pump/Part/Shut/Check:** Corrected bug in Pump/Part/Shut/Check which prevented th edialog box closing when this option is selected
- 2 **STAN:** Stan Pipe at an end nodes did not read the run correctly as misreads the end node type

Hytran3.6.1-3

=================

- 1 **SURG** dialog did not record some charges to the Spill included and Tank Area options.
- 2 **SURG** Simple Branch did not stop at RL min corrected
- 3 **Surg Orifice** junction and branch can continue at RL Min
- 4 **Surg** Inflow to all surge tanks
- 5 **PIPE:** Additional Pipe Ratings available from 2.5 64 bar
- 6 Min pressure envelop availble

Hytran3.6.2-3

1 Dummy Pipes now in RED colour

1.0 DRES, URES,VALD, VALI: % opening vs Coefficient added to Input An additional row of table has been added to the above input dialog. Previously the coefficients of discharge have been spaced out at constant intervals for the valve % stem position. At small openings the coefficient can vary widely. The coefficents are now paired with the % stem opening position.

DRES: Downstream Rese	ervoir 🛛 🗙
Downstream Reservoir Data	
Node No	28 Node RL[m] 105 Amplitude (m)
Reservoir Level RL[m]	110 Reservoir Level Type Period (s)
Exit Coefficient (kv2/2a)	Constant Reservoir Level Wave Length (m)
Over Pressure (m)	C Sine Wave *Displacement (m)
Me of Level Velves	* Optional input
Start	Reservoir Level RL[m]
0 1 0	
Start	Time (s)End
jo jo jo	jo jo jo jo jo jo
Additional Valves Main Valve	Auxillary Valve OK Cancel
VALV	NONE Auxillary Valve Data Clear Help
Head Loss Discharge Coeffi	icient (Cd)
What Coefficients ?	NONE
Valve Database	NONE Cd Kv Add Valve to DB
No of Coefficients 11	- Cone K I 1/K Delete Valve from DB
Fully Closed	=======Valve Coeffiicent ======>
0.0001 0.01 0.04	0.08 0.127 0.2 0.26 0.318 0.36 0.39 0.41
Fully Closed	0 ===Corresponding Valve Opening (0 - 1.0) ===>1Fully Opened
0 0.05 0.1	0.25 0.4 0.5 0.6 0.7 0.8 0.9 1
Valve Operation Data	
Time of Operation (s)	30 Surge Relief Override OptionAdditional input for teh %
Valve Operation Time Delay	(s) 0 Wave Reflection Coefficient
Valve Diameter (mm)	550 Rated Discharge (m3/s) 0.3831
No of Values in Closure cur	ve 2 Print Valve Data What Operational Values ?
Start Valve	Opening (% Stem or % Area) Open = 1; Closed = 0)End
0.324 0 0	lo lo lo lo lo lo
Start	
1. 1	

2.0 VALI: New algorithm and Optional inclusion of the additional headloss

A new algorithm is now used for the in line control valve. Previously the discharge coefficients were converted to 1/K. Now the Cd is used.

Previously if the incoming pipe diameter is smaller than the valve diameter, an additional head loss Was added to the discharge coefficients.

$$\begin{aligned} \mathcal{K}_{s}^{*} &= \mathcal{K}_{s} + 1.5 \left(1 - \frac{D_{rdlw}^{2}}{D_{pype}^{2}} \right)^{2} \\ \hline \\ \mathbf{VALL: In Line Control Valve} \\ \hline \\ \mathbf{Value Noa} \\ \mathbf{Node No} \\ \mathbf{Node No} \\ \mathbf{Node RL(m)} \\ \mathbf{Sd} \\ \mathbf{Valve Diameter (mm)} \\ \mathbf{Bld} \\ \mathbf{Calculate Diameter} \\ \mathbf{None} \\ \mathbf{Rated Discharge (m3/s)} \\ \mathbf{56.45} \\ \mathbf{V} \\ \mathbf{Pint Valve Data} \\ \mathbf{Static Head (HGL(m))} \\ \mathbf{Valve Reflection} \\ \mathbf{1} \\ \mathbf{Calculate Diameter} \\ \mathbf{Valve Inially Closed} \\ \mathbf{Valve Reflection} \\ \mathbf{1} \\ \mathbf{Static Head (HGL(m))} \\ \mathbf{Valve Sin Area/time Curve} \\ \mathbf{Time of Operation (s)} \\ \mathbf{0} \\ \mathbf{Rated Discharge Coefficient (S) \\ \mathbf{Valve Inially Closed = 0)} \\ \mathbf{No of Values in Area/time Curve} \\ \mathbf{Time of Operation (s)} \\ \mathbf{0} \\ \mathbf{Statt.... Valve Opening (% Stem or % Area) Open = 1; Closed = 0) \\ \mathbf{Statt.... Valve Opening (% Stem or % Area) Open = 1; Closed = 0) \\ \mathbf{Statt.... Valve Opening (% Stem or % Area) Open = 1; Closed = 0) \\ \mathbf{Statt.... Valve Database} \\ \mathbf{Valve Database} \\ \mathbf{Va$$

The additional headloss inclusion is now an option. For example, in using the valve to model turbine gate closure it is more appropriate to exclude this additional headloss. Aditioanl head loss can be added as a minor loss in the incoming pipe.

3.0 SURG: Option to allow the tank to empty

Thi sis only available for simple surge tnaks at junctoions only. This optipn models a standpipe which empties an dallows air into the pipeline. Used with an air valve in series (+ DUMMY pipe)

SURG: Surge Tank Data			Allow	a tamk to re	ach
Node No	2	Select SurgeTank	minim and con	um water le dinue proce	ssingel
Tank Diameter (m)	30				нер
Minimum Water RL(m)	57	🔽 Allow Tank t	o Empty	Print Sur	ge Data
-		🔲 Include Over	rflow Spillway		
Single Opening	Double Opening	🔲 Supply Tank	Area		
Additional Surge Tank Data Inlet Diameter (m)	58.	Inflow Co	oeffiicent Cd	0.3	7
Outlet Diameter (m)		Outflow (Coeffiicent C	d 0.3	7
 Overflow Spillway D Spillway Width (m) 	ata	Spillway	Level RL(n	n) 0.	
Max Tank Level RL(m	0.	Spillway	Coefficient,	Cd 0.	
Spillway Exponent,	0.				
Supply Custom Tank	Area Level RI	_ vs Area ——— —			
Tank Area Level RL(m)	J۲				
0. 0. 0.	0. 0.	0. 0.	0. 0.	0.	0.
Tank Area (m2) 0. 0.	0. 0.	0. 0.	0. 0.	0.	0.

4.0 Pump/RUNS allows the user to input pump curve

Enter the pump head vs discharge curve. Best to include the pump Duty point (H, Q) as a pair of values

Pump Head-Discharge Cu	irve		×
Pumping Station Configuratio	n Node RL(m) 5	OK Cancel	
Kind Extent RESV FULL	Operation Valve RUNS CHEK	Clear Help	
Pump Curve Data Noof Values in Pump Curve	3		
Zero Discharge	Pump Discharge (m3/s)		
0 0.1	0.25 0.4	0.57 0.7	
Shut off Head	Pump Head (m) 95 92.5	90 87	

5 Pump/STAR/CHEK and PUMP/SHUT/CHEK allows the user to input pump curve Pump Dialog Pump Station Configuration Node No 1 Pump Options Information Node RL(m) 0.5 Kind Extent Operation Valves RESV FULL STAR CHEK 🔻 • • • Pump Data -per pump SHON/STAR with CHEK 0.153 Rated Discharge (m3/s) allows pump curve 120 Rated Head (m) Cancel input 1450 Rated Pump Speed (rpm) Clear 90 Rated Efficiency (%) Help 3.455 Moment of Inertia (kg.m2) OTHER DATA HELP WR2 alculate WR2 Supply pump curve Pump Curves 2 No of Pumps PUMP/CHEK: Pump Start Up/Shut Down Against Check Valve Include the pump duty Pumping Station Configuration point Q, H as a pair of 0K 1 Node No values Cancel Extent Kind Valve Operation Clear RESV FULL STAR CHEK Start/ShutDown Operation 107.21 Static Head (HGL[m]) For Startup operation only 10 Help - Start Up Time of Operation (s) 2 No of Values in Operation Curve Help - Shut Down Operation Curve (Full Speed = 1, Zero Speed = 0) Individual pump shut down curve (% speed) vs time (s)Finish Start..... 0 1 0 0 0 0 0 0 0 Start... Times (s) .Finish 0 10 0 0 0 0 0 0 0 Pump Curve Data No of Values in Pump Curve 6 Zero Discharge Pump Discharge m3/s) 0.153 0.05 0.17 0 _ 0.1 0.16 Shut off Head Pump He ad (m) 140 135 127 120 115 110

6.0 PUMP/STAR/VALI and PUMP/SHUT/VALI allow users to input pump curve

7.0 Text Boxes to label the drawing

Text boxes may be added to label parts of the drawing

First select the the font

Export to Excel	Text Box	Window	Help
ENA	1 Sele	ct Font for	Text
	2 Ent	erText:	- H
	 ShowText Box 		

Only Regualr fonts are used. The default font is the 12 point Arial black color.

To insert the text select the A iocn

Place the cursor at the desired location and left click

To bring up the dialog box and enter text, select color or change font size

Enter Text	
enter text here	OK Cancel
Font Name	Arial
Select Text Color Black Red Blue Green Magenta	Select Text Size

The Text box may be edited by clicking the A button and then palce the cursir on the text to be edited

The Text box may be moved to a new location by selecting the \Re icon and then place the cursor on the text to be moved, left click and hold the button down and drag the text box to new location.

8.0 Additional Dialog box for convenient editing of node and pipe data

An additional dialog is avaialble to edit and view node and pipe data. The dialog stays open until it is shut.

Acces the dialog Text Box View Data View C View C PipeDa	via Window Help Coords ata		
		Pipe Data	×
		Pipe No Drawing Mode Type of Pipe	Traw to Scale
Node No X Coord (m) Y Coord (m) Z Coord (m) HGL (m)	5 218.5 7 0	Pipe Length (m) Diameter (mm) Discharge (m3/s) Wall Thick (mm) Elasticity (Pa) Friction Darcy (f)	104 211.58 0.05 3.76 20000000000 0.019
Coordinate data	Apply may be edited	Pipe Data may b	Apply de edited

Once the dialog box is open move the cursor over a node (of the coordinate box is open) th enode coordinates wil be shown in the input boxes.

If the pipe dialog box is open, move the cursor on a pipe to show the pipe data.

The node coordinates and the pipe data may be edited

9 AIRV: Back	Siphon Brea	k	
AIRV: Air Valve			×
Air Valve Data			
Node No	2	🥅 Print Air Valve Data	
Node RL(m)	71.9	🔲 Anti Surge Option (3 stage)	
No of Valves	1	🔽 Back Siphon Breaking Valve	
Valve Diameter IN (mm)	100	Valve Diameter OUT (mm)	10
Inlet Coefficient, Cd	0.7	Outlet Coefficient, Cd 0.3	7
Fluid Temperature (C)	20	Atmospheric 30 Temperature (C)	
Gas Constant (N.m/kg.K)	287	Vaccuum Break -4 Head (m gauge)	
2 stage Anti Shock: Set th Anti vacuum: Set th	e Outlet Diamete e Outlet Diamete	r to smaller value to trap volume of ai r = 0.0 (traps all air in the pipe)	
		Help for	Anti-Shock
ОК	Cancel	Clear Help	

Notes

- Anti Surge Option and Back Siphon Breaking Valve options mutually exclusive.
- Back Siphon acitvated to admit air when the flow reverses to break the siphon.
- Vaccum break head may still be used for the forward flow to provide vacuum break protection
- To deactivate the vaccum break, select head less than vacuum so the valve does not open

To model this type valve see next page

SYPHON AIR VALVE (MAKE AND BREAK)

SYPHON AIR VALVES are a unique type of Air/Vacuum Valve incorporating a paddle which hangs down into the main pipeline flow stream. The valve will allow a syphon flow to be developed and maintained. Subsequently should the syphon flow reverse, the paddle swings in reverse causing the float to drop and breaking the syphon. The APCO Syphon Air Valve requires no electrical connections or regular maintenance and is ideally suited for remote outdoor environments. In recent years with the emphasis on energy conservation, consulting engineers for water and waste water, often consider pumping by means of a syphon loop. APCO SYPHON AIR VALVES are ideally suited for this application. Solenoid valves for small diameter syphons, or pneumatically operated butterfly valves for large diameter siphons, may also be adapted for this application, but installation and maintenance is complicated and cumbersome. For example, power lines and air lines must be installed to operate these valves. An air compressor is also needed. APCO SYPHON AIR VALVES are mechanically operated, requiring no auxiliary power. They merely respond to flow, in either direction, to make the syphon or break it. Maintenance is virtually non-existent.

Series 5200 available in sizes 3"-16" for syphons up to 60" in diameter.

10 Help for Vista

It seems that the classic Windows Help is not currently supported in the Windows Vista OS.

In anticipation of Vista becoming more common Hytran now ships a Help file that is compatible with Vista

Classic Help files Hytran.cnt Hytran.hlp

Vista Help

Hytran.chm

These file are all located in the c:\Program Files \Hytran Solutions folder

Important Note for Network License

A Window security patch does not allow *.chm to be found over network drives. The Hytran.chm Help file must be installed on the local C Drive. (Special Instructions are available.)

11.0 Drawing Parallell Curved Pipes

Pipes are by default drawn as a straight line joining 2 nodes. A parallel pipe may be drawn but would lie on the same line between the 2 nodes. To differentiate between the parallel pipes, they may be drawn as a curve with different curvature and over or above the initial straight pipe.

To select between the straight and curved pipes from the toolbar.

and draw the straight / curved pipe between the nodes.

Note:

In the Elevation or Plan View, a curved line is actually represents a straight pipe between the 2 nodes. To select a curved pipe, place the selection cursor on the pipe arrow.

PUMP/VALI: Pump Sta	art Up/Shut D	own Again	ist Contro	ol Valve			X
Pumping Station Configur	ation				שו	Ц	
Node No 1	_					——————————————————————————————————————	nb
Kind Extent	Operation	n Valve		Ca	ncel	Help	Start Up
RESV FULL	SHUT	VALI		C	lear	Help - S	Shut Down
Start/ShutDown Valve 0 Static Head (HGL[m])	peration	For St	artup opera	tion only			
Time of Operation (s)	200	Way	Reflection	1	1		
Valve Diameter (mm)	600	Coer	ncient		1		
- Pump Valve Operation	Curve (% Stem o	r % Area)					
No of Values in Operati Start	on Curve 11		Full Upen Full Closed	= 1 d = 0			End
1 0.4 0.25	0.21 0.	15 0.12	0.105	0.08	0.04	0.015	0
Start		Times (s)					Finish
0 20 45	70 90	110	120	140	160	180	200
- Head Loss Discharge C	oefficient (Cd)						
Help for Coefficients	Type of Vave		Kind of Coe	fficient	-Valve D ∏ Edit V	atabase — /alve in DB	,
Valve Database	NONE		Пκ		🗌 Add \	/alve to DI	в 🛛
No of Values 11	Cone Butterfly		□ 1/K		🗌 Delet	e Valve fro	m DB
Valve Fully Closed	Globe		∏ Kv			Valve I	Fully Open
0.0001 0.01 0.08	0.15 0.	221 0.3	0.381	0.46	0.54	0.63	0.8
Fully closed) ===Correspond	ing Valve Ope	ening (0 - 1.	0) ===>1		Full	y Opened
0 0.1 0.2	0.3 0.	4 0.5	0.6	0.7	0.8	0.9	1
Pump Curve Data No of Values in Pump C Zero Discharge 0 0 Shut off Head	urve 6 Pump D 0 Pump Head	ischarge (m3/ 0 d (m) 0	's) 0	0			

13 Composite Pipes added to the Pipe Input Dialog

Composite pipes are made from materials of different wall thickness and elasticity which will affect the wave speed. Hytran uses the following procedure to calculate the equivalent pipe thickness for the pipe.

Click on the "Composite Pipe Wall Thickness Calculator to open the dialog box

Composite Pipe Wall Thick	rness	\mathbf{X}
	Pipe Wall Thickness (mm)	Pipe Elasticity (GPa)
Primary Pipe Material	8	200
Secondary Pipe Material	12	30
Calcualte composite pipe w	vall thickness	
Composite Wall Yhickness (m	m) 9.8	
ОК Са	incel Clear	Help

Input

- 1 Primary pipe wall thickness
- 2 Primary Pipe Elasticity
- 3 Secondary pipe wall thickness
- 4 Secondary Pipe Elasticity

Pipe Dialog	
- Pipe Coords	Select Pipe Material
Pipe No 3 Start End	Cast Iron
X-Distance (m) 1500 3572.8	OTHER
Elevation RL[m] 2 34	Steel Cast_Iron
Z-Distance (m) 22 23	Concrete Polyethylene
Pipe Length (m) 2073.04 DRAW to SCALE	Copper
🔲 Dummy Pipe (virtual zero length)	Database Warning
	Add Pipe in DB
Pipe Data	Edit Pipe in DB
Diameter (mm) 750	Delete Pipe in DB
Discharge (m^3/s)	Select Material
Wall Thickness (mm) 45.7	Pipe Constraints
Composite Pipe Wall Thickness Calculator	Expansion Joints
Elasticity (Pa) 12000000000	C Anchored at upstream end
E Select Wave Speed (m/s) option	C Fully Anchored
Calcualte Wave Speed	Poisson's Hatio
	Type of Pipe
wave Speed Inro	Thin Walled (D/e > 25)
Select Friction C Roughness (mm)	○ Thick Walled (D/e < 25)
Friction Factor	C Circular Tunnel (eg Rock)
	C Other
Minor Head Loss K 0 K Values	
Visco Elastic Option	Optional
	(SMYS) (KPa)
	Ju
Pipe Input Options	
🦳 Auto input EACH pipe 🔲 Auto input ALL pipes	Auto RESET ALL pipes
OK Cancel Clear	Help

14 Pipe Constraints Added to Pipe Input Dialog box

Pipe constraints and the type of Pipe added to dwfiiwn the pipe This reauires the Poisson's ratio as required input.

The default is pipe line with expansion joints and thin walled (disregards Poissons ratio) .

Add the Poisson's ratio to pipe data base file "PipeDB.pdb"

Other factors affecting the wave speed include

- Whether the pipeline is constrained against longitudinal movement
- Type, shape and material of the conduit (thin walled , thick walled, Rock tunnels or composite materials
- The wave speed varies with the passage of a pressure wave.
- Free gas entrained in the fluid affects the bulk modulus, K. Even a small amount of free gas can decrease the wave speed dramatically. Further, the amount of free gas in a fluid cannot be determined accurately. For a conservative analysis, use a low or zero free gas percentage.

1 For Thin and Thick Walled Pipes (from V CStreeter, "Fluid Transients*)

Constraint Coefficients	Thin Walled (D/e > 25)	Thick Walled (D/e < 25)
The pipeline has expansion joints throughout its length	C ₁ = 1	$C_1 = \frac{2e}{D}(1+\mu)\big) + \frac{D}{D+e}$
The pipeline is anchored at upstream end only	$C_1 = 1 - \frac{\mu}{2}$	$C_1 = \frac{2e}{D}(1+\mu)) + \frac{D}{D+e}\left(1-\frac{\mu}{2}\right)$
The pipeline is anchored against longitudinal movement	$C_1 = 1 - \mu^2$	$C_1 = \frac{2e}{D}(1+\mu)) + \frac{D}{D+e}(1-\mu^2)$

Where μ is the Poisson Ratio for the pipe material.

2 Circular Tunnels (where the rock thickness is very large)

Note: The wave speed calculated by formula in Streeter's book is less than value calculated from the formula quoted in Chaudhry's book.

3 Steel Line Rock Tunnels

Formula quoted in V C Streeter, Fluid Transients	Formula quoted in M H Chaudhry, Applied Hydraulic Transients
$a = \sqrt{\frac{K/\rho}{\left(1 + \frac{KD}{Ee}\right) * \left(\frac{2Ee}{E_{g}D + 2Ee}\right)}}$	$a = \sqrt{\frac{\frac{K}{\rho}}{\left(1 + \frac{K}{E}\right)^* \left(\frac{DE}{E_* D + Ee}\right)}}$
where $E_R = Young's Modius for rock$ e = steel thickness E = Young's Modius for steel	where E _R = Young's Modlus for rock e = steel thickness E = Young's Modlus for steel

Note: The wave speed calculated by formula in Streeter's book is less than value calculated from the formula quoted in M H Chaudhry's book

4 Reinforced Concrete Pipe (from M H Chaudhry, Applied Hydraulic Transients)

Replace the pipe with an equivalent steel pipe of equivalent thickness given by

$$e_e = E_R e_c + \frac{A_s}{l_s}$$

where

E_c = modulus of elasticity of concrete

 E_s = modulus of elasticity of steel

 E_r = ratio of E_c/E_s

 e_{C} = thickness of concrete pipe

 A_s = Reinforcing steel cross sectional area

 I_{S} = spacing of the reinforcing steel

 E_R may vary between 0.06 to 0.1. Chaudhry suggests a value of E_R = 0.05 to allow for cracks in the rock

Editing the Pipe Data base

Hytran supplies a text database file containing coefficients for typically a **Cone, Butterfly and Globe valve.** The file is listed below. The name is **ValveDB.dba** and is found in the **Hytran Solutions** folder.

6 OTHER 0. 0. 0.0 Steeler3 2.e+011 3.3e-002 **0.28** mPVC2 600000000 25.39 0.35 Concrete 3.1e+010 5. 0.2 CLS 3.e+010 3. 0.2 Cast_Iron 23000000. 0.45 0.25

Format for the Text File PipeDB.dba

<Line 1> Number of pipes in database <Line 2> Name of Pipe <Line 3> Elasticity (Pa) Pipe Wall Roughness (mm) Poisson's Ratio <Line 4> Name of Pipe etc, etc

Repeat <lines 2-3> for each new pipe.

DO NOT use blank spaces for the pipe name and only 20 non blank characters allowed.

Editing the Pipe Data base File

Prior to Hytran Version 360, the Pipe Database only required the Elasticity and the Pipe Roughness

1 Manual Editing

Use any Test Editor (eg NotePad, Word) to edit the file and add the Poisson's Ratio to each line eg Line 3 above Concrete

3.1e+010 5. 0.2

2 Pipe Input Data

Select the Edit Pipe Data base and enter the Poisson's Ratio for each pipe

Pipe Database	
Pipe Name (max 20 char with no blanks) Elasticity (Pa)	Cast_Iron 12000000000
Houghness (mm) Poisoon Ratio	0.28
OK Cancel	Clear Help

20 AIRC: MASSAL Air Chamber New algorithm to include air valve specification

Previous the Massal Air chambe could be modelled by linking the air chamber with an air valve using a DUMMY Pipe.

The new algorithm no longer uses the external air valve but has additional input data to specify the air valve parameters. The new alogrithm swtiches between the air valve and the air chamber

AIRC: Air Chamber	
Air Chamber Data Node No 2 Node RL(m) 35.6 Print Air Chamber Data Nozzle Diameters Nozzle Diameter OUT (mm) 0	□ Use Horizontal Chamber OK Cancel □ Bladder Air Chamber Clear Help □ Charlatte Air Chamber Clear Help □ ''Massal'' Air Chamber Air Valve for Massal Coefficient Out, Cd 0
Nozzle Diameter IN (mm)	Coefficient In, Cd 0.6 Air valve input for the Massal Air Chamber
No of Identical Air Chambers	1 Pre-Charge Head (m) 0
Total Chamber Volume (m3)	5 Calculate Start Condiitons
Percentage Volume Air (%) Steady State	22.139
Area of Chamber (m2)	2 Water Start Level (m) 1.947
Maximum Air Volume (%) of Total Volume	100 Min Water Level (m) 0
Bottom of chamber (RL[m])	36 Estimate HGL (m) at 90 Node
Polytropic Index for Gas	1.2 Show Start Conditions
Maximum Working Head (m)	0 <===== Optional input
Charlatte Type Air Chamber	

The additioanl data is

Air Valve for Massal Air Chamber		
Node No 2 Node RL(m) 35.6		
Valve Diameter IN (mm) 80 Inlet Coefficient, Cd 0.6	Valve Diameter OUT (mm) Outlet Coefficient, Cd	80 0.67
OK Cancel	Clear	

Improvments

Fluid Properties (menu item Paramters. Fluid Proeries

Atmospheric pressure entered as an input as Po = 1.0132 bar / 14.607 psi

Pipe Network Parameters		X
Network Data Scale and Plotting Parameters Fluid Pro	operties	
Network Data Scale and Plotting Parameters Huid Pro Fluid Properites Fluid Density (kg/m3) 1000 Gravity (m/s2) 9.81 Atmospheric Pressure (bar abs) 1.0132 Atmospheric Pressure (m abs) 10.3282 Vapour Pressure (m abs) 0.2 Saturated Pressure (m abs) 9.8 Fluid Temperature (C) 27	perties Gas Constant (N.m/kg.K) 287 Bulk Modulus of Fluid (Pa) 2000000000 Kinemetic Viscosity (m2/s) 1e-006 Maximum Air Release Permitted (%) 0.00216 Air Release Gradient Constant 4e-005 Air Release Solubility Constant 3e-006 Clear Help	
calculated by the Ho = Po/(density * gravity)	OK Cancel Apply Help	

The atmospheric head Ho = Po/(density * gravity)